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Theory of Infinitely Extended Particles

Seyyed Mahmoud Hessaby∗

Department of Physics

University of Tehran, Tehran, Iran

Abstract

The difficulties with which the concept of point-like particles is beset, such as the infinities

encountered in the existing theories of elementary particles, suggest a different approach to the

study of these particles. Instead of restricting ourselves to the concept of point-like particles,

we should extend our investigation to the implication of the concept of particles having infinite

extension. Such a particle should consist of a continuous distribution of energy over all space, the

energy density tending to zero at infinity.

To achieve this aim, we introduce into the theory of general relativity the postulate that the

gravitational, electric and nuclear fields are special cases of a more general field. An expression

is obtained for the gravitational potential which differs from the usual expression of the potential

accepted in general relatvity, and which gives an energy density for the particle at every point of

space, the integral of which over all space is equal to the mass of the particle, the greatest part

of the mass being concentrated near the center of the spherical pattern constituting the particle.

The particle is thus seen to consist of the energy of its field. No infinities are encountered in the

integrations.

The same result is obtained for a charged particle. The charge density is spread out over all space

and the integrals of the charge density and energy density are respectively equal to the charge and

mass of the particle.

The electric potential this obtained is inserted in Dirac’s wave equation, and gives a series of

equations of increasing degree, the first of which gives the mass of the muon.

In addition to the expressions obtained for the electric and gravitational potentials, an expression

is found for a potential which has the form of a dipole potential. When inserted in Dirac’s wave

equation, this potential gives the values of the masses of baryons. When inserted in the Klein-

Gordon equation, this potential gives the values of the masses of mesons.
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I. FOREWORD

The original author of the manuscript, Professor Seyyed Mahmoud Hessaby [1], devised

the initial theory of Continuous Particles while he attended a visiting position at the Prince-

ton’s Institute of Advanced Study by invitation of Albert Einstein. He published the initial

line of thoughts in 1947 in the Proceedings of National Academy of Sciences [2]. He also

published a second paper in 1957 in French language entitled Modèle de particule infinie [3]

(Model of Infinite Particles).

About twenty years later in 1977, he managed to formulate a fully extended and unified

version of his theory but for unclear reasons it remained as unpublished; he only reproduced

it in very few numbers at Tehran University Press [4], where he had founded himself. This

TeX article has been typeset based on a rare remaining copy obtained from within the US

market.

This paper presents the only existing theory which unifies the three forces and also

successfully estimates the mass ratios of various elementary particles. At present, there is

simply no other theory being capable of estimation of particle mass ratios, at least within

the framework of Standard Model.

Aside from a couple of minor calculation errors and typos which have been removed

during the reproduction, Professor Hessaby’s derivations seem to be completely flawless.

Professor Mahmoud Hessaby’s contributions to the infrastructure of science in the Iranian

society was just overwhelming. He founded the Tehran University, Iranian Physical Society,

Atomic Energy Organization of Iran, Institute for Geophysics, the first Radio Broadcasting

Center, the first Private Hospital, and much more.

Professor Seyyed Mahmoud Hessaby passed away in 1992. He is correctly recognized as

the Father of Modern Physics in Iran.

II. THE GENERALIZED FIELD

A. The Four-Potential

Our postulate is that the gravitational, electric, and nuclear fields are special cases of

a more general field. Designating the four potential by Φµ, the field in the general case is

given by the expression
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TABLE I. Components of the field tensor Fµν .

0 0 −∂Φ3

∂x1
−∂Φ4

∂x1

0 0 −∂Φ3

∂x2
0

∂Φ3

∂x1

∂Φ3

∂x2
0 0

∂Φ4

∂x1
0 0 0

Fµν =
∂Φµ

∂xν
− ∂Φν

∂xµ
(2.1)

The charge-current vector is

Jµ =
1

2π
(F µν),ν (2.2)

and the energy tensor is

Uν
µ =

1

2π
(−F ναFµα +

1

4
gνµF

αβFαβ) (2.3)

By contraction of (2.3) we have also

U = 0 (2.4)

We assume first the existence of only two components of Φµ viz, Φ3 and Φ4, Φ4 depending

only on r, while Φ3 may depend on both r and θ. The components of the field are as given

in the table I.

B. The Potential Φ4

We take first the case in which the component Φ3 = 0. We write the line element in the

form

ds2 = −eαdr2 − eβr2dθ2 − eγr2 sin2 θdφ2 + eδdt2 (2.5)

where we assume that α, β, γ, and δ depend only on r.

In order to write down the components of Uν
µ , we calculate first F

αβFαβ. Since we assume

that Φ4 depends only on r, we have ∂Φ4

∂θ
= ∂Φ4

∂φ
= 0, so that
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F αβFαβ = F 14F14 + F 41F41 = 2g11g44(F14)
2 = −2e−(α+δ)(F14)

2 (2.6)

Also

F 1αF1α = F 4αF4α = g11g44(F14)
2 = −e−(α+δ)(F14)

2 (2.7)

so that

U1
1 = −U2

2 = −U3
3 = U4

4 =
1

4π
e−(α+δ)(F14)

2 (2.8)

The contracted tensor is

U =
∑

Uν
µ = 0 (2.9)

Designating the Ricci tensor by Rν
µ, the expression for the energy tensor is

T ν
µ = − a

4π
(Rν

µ −
1

2
gνµR) (2.10)

where a is a dimensional constant.

Since we have identically U = 0, the identification of T ν
µ with Uν

µ , gives by contraction

U = T =
a

4π
R = 0 (2.11)

so that we have identically R = 0.

Taking account of (2.11), relation (2.10) becomes

Uν
µ = T ν

µ = − a

4π
Rν

µ (2.12)

relations (2.8) and (2.12) give

R1
1 = −R2

2 = −R3
3 = R4

4 = −1

a
e−(α+δ)(F14)

2 (2.13)

We write Rν
µ in terms of α, β, γ, δ. The only Christoffel symbols which do not vanish are

enlisted in table II.

The expressions that we obtain for the Rν
µ are
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TABLE II. Non-vanishing Christoffel symbols.

{11, 1} = 1
2α

′ {21, 2} = 1
2β

′ + 1
r

{12, 2} = 1
2β

′ + 1
r

{22, 1} = −eβ−α(12r
2β′

+ r)

{13, 3} = 1
2γ

′ + 1
r

{23, 3} = cos θ
sin θ

{14, 4} = 1
2δ

′

{31, 3} = 1
2γ

′ + 1
r

{41, 4} = 1
2δ

′

{32, 3} = cos θ
sin θ

{44, 1} = 1
2δ

′eδ−α

{33, 1} = −eγ−α sin2 θ(12r
2γ′ + r)

{33, 2} = −eγ−β sin θ cos θ

R1
1 = e−α(−1

2
β ′′ − 1

2
γ′′ − 1

2
δ′′ − 1

4
β ′2 − 1

4
γ′2 − 1

4
δ′2 +

1

4
α′β ′ (2.14)

+
1

4
α′γ′ +

1

4
α′δ′ +

α′

r
− β ′

r
− δ′

r
)

R2
2 = e−α(−1

2
β ′′ − 1

4
β ′2 +

1

4
α′β ′ − 1

4
β ′γ′ − 1

4
β ′δ′ (2.15)

+
1

2

α′

r
− 3

2

β ′

r
− 1

2

γ′

r
− 1

2

δ′

r
− 1

r2
) +

e−β

r2

R3
3 = e−α(−1

2
γ′′ − 1

4
γ′2 +

1

4
α′γ′ − 1

4
β ′γ′ − 1

4
γ′δ′ (2.16)

+
1

2

α′

r
− 1

2

β ′

r
− 3

2

γ′

r
− 1

2

δ′

r
− 1

r2
) +

e−β

r2

R4
4 = e−α(−1

2
δ′′ − 1

4
δ′2 +

1

4
α′δ′ − 1

4
β ′δ′ − 1

4
γ′δ′ − δ′

r
) (2.17)

By relation (2.11) the contracted tensor R is zero

R =
∑

Rµ
µ = e−α(−β ′′ − γ′′ − δ′′ − 1

2
β ′2 − 1

2
γ′2 − 1

2
δ′2 (2.18)

+
1

2
α′β ′ +

1

2
α′γ′ +

1

2
α′δ′ − 1

2
β ′δ′ − 1

2
γ′δ′ − 1

2
β ′δ′

+
2α′

r
− 3β ′

r
− 3γ′

r
− 2δ′

r
− 2

r2
) +

2e−β

r2

= 0
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We remark that expressions (2.15) and (2.16) are identical in form except for the inter-

change of β ′ and γ′. This fact, together with the equality R2
2 = R3

3, suggests that we assume

the equality of β ′ and γ′. Replacing γ′ by β ′ in relations (2.14) to (2.18), and making use of

the equality R1
1 = R4

4, we obtain

e−α(β ′′ +
1

2
β ′2 + 2

β ′

r
− 1

2
α′β ′ − 1

2
β ′δ′ − α′

r
− δ′

r
) = 0 (2.19)

1. Case I

We consider first the case where β = γ = 0. Relation (2.19) gives then δ′ = −α′, and

relation (2.18), with δ = −α becomes

eδ(−δ′′ − δ′2 − 4
δ′

r
− 2

r2
) +

2

r2
= 0 (2.20)

The solution

eδ = (1 +
K

r
)2 (2.21)

where K is a constant depending on the mass of the particle and having the dimensions of

a length, satisfies equation (2.20). In this special case, we have therefore

eα = e−δ = (1 +
K

r
)−2 (2.22)

and since we have assumed β = γ = 0, the line element becomes

ds2 = − 1

(1 + K
r
)2
dr2 − r2dθ2 − r2 sin2 θdφ2 + (1 +

K

r
)2dt2 (2.23)

2. Case II

If we extend the validity of the equality δ′ = −α′ to the general case where β ′ 6= 0, the

differential equation (2.19) reduces to

β ′′ +
1

2
β ′2 + 2

β ′

r
= 0 (2.24)

which admits the solution
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β ′ = − 2A

r(r + A)
(2.25)

giving

β = 2 log
r + A

r
= log(1 +

A

r
)2 (2.26)

so that

eβ = (1 +
A

r
)2 (2.27)

To find the expression for α, we make use of the relation R = 0 in equation (2.18), which

when set γ = β becomes

e−α(−2β ′′ − 3

2
β ′2 − 6

β ′

r
+ α′′ − α′2 + 4

α′

r
+ 2α′β ′ − 1

r2
) +

e−β

r2
= 0 (2.28)

The solution

α′ = β ′ = − 2A

r(r + A)
(2.29)

satisfies relation (2.28). We have thus, with δ = −α

eα = eβ = eγ = (1 +
A

r
)2 (2.30)

eδ = (1 +
A

r
)−2

and the line element assumes the form

ds2 = −(1 +
A

r
)2(dr2 + r2dθ2 + r2 sin2 θdφ2) +

1

(1 + A
r
)2
dt2 (2.31)

III. THE GRAVITATIONAL FIELD

A. First Solutions of the Field Equation for Φ4

We consider the form of the line element as found in (2.23)
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ds2 = − 1

(1 + K
r
)2
dr2 − r2dθ2 − r2 sin2 θdφ2 + (1 +

K

r
)2dt2 (3.1)

The field F14 is given by relation (2.8), which δ = −α

U4
4 =

1

4π
e−(α+δ)(F14)

2 =
1

4π
(F14)

2 (3.2)

Relation (2.17) becomes, since we have here δ = −α and β = γ = 0

R4
4 = eδ(−1

2
δ′′ − 1

2
δ′2 − δ′

r
) (3.3)

By (2.21), we have eδ = (1 + K
r
)2, so that

δ′ = − 2K

r(r +K)

δ′′ = 2K[
1

r2(r +K)
+

1

r(r +K)2
]

and we get

R4
4 = −K

r4
(3.4)

Relation (3.2), together with relation (2.12) gives then

F14 =

√
aK

r2
(3.5)

The energy density (2.12), becomes

U44 = − a

4π
R44 = − a

4π
g44R4

4 = − a

4π
e−δR4

4 =
a

4π

K2

r2(r +K)2
(3.6)

The integral of energy density over the whole space is

W =
a

4π
K2

∫

1

r2(r +K)2
r2 sin2 θdθdφdr = aK2[− 1

r +K
]∞0 = aK (3.7)

The mass of the particle being m, expression (3.7) must be equal to mc2

aK = mc2 (3.8)
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The dimension of K being that of a length, the dimensions of a must be that of a force.

We remark that the combination of Gm
c2

, where G is the gravitational constant, has the

dimension of a length, and that the combination c4

G
has the dimension of a force. We set

a =
c4

G
(3.9)

K =
Gm

c2

We see that in the integral of the energy density (3.7) we encounter no infinities, and

that the mass of the particle consists of the integral of its energy density over all space. The

particle is seen to have infinite extension, the greatest part of its mass being nevertheless

concentrated near the center of spherical pattern constituting the particle.

The line element (2.23) becomes now

ds2 = − 1

(1 + Gm
c2r

)2
dr2 − r2dθ2 − r2 sin2 θdφ2 + (1 +

Gm

c2r
)2dt2 (3.10)

The difference between this solution and Einstein’s solution

ds2 = − 1

(1− 2m
r
)
dr2 − r2dθ2 − r2 sin2 θdφ2 + (1− 2m

r
)dt2 (3.11)

is that in the line element (3.10) the gµν are perfect squares, and also that they do not have

any singularities apart from the origin, giving withal a finite value for the energy of the

particle.

The contravariant charge current-density vector is

J4=
1

2π
(F µν),ν (3.12)

=
1

2π
√−g

∂

∂r
(F 4ν√−g)

=
1

2πr2
∂

∂r
(g44g11F41r

2)

=
1

2πr2
∂

∂r
(F41r

2)

=
1

r2
∂

∂r
(

√
Gm

r2
r2)

= 0
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The vanishing of J4 is of course to be expected in the case of the gravitational field.

The interpretation of g11 = −(1 + Gm
c2r

)−2 is that of a strain in the direction of the radius

vector, reducing the length of the unit mesh in that direction by the factor (1+ Gm
c2r

)−2. The

Rµν are not interpreted in terms of a curvature, but rather in terms of strains in space. The

identity R ≡ 0 means here that the total strain at any point of space is zero.

IV. THE ELECTRIC FIELD AND LEPTONS

A. Second Solution of the Field Equations for Φ4

We now consider the line element as given in (2.31)

ds2 = −(1 +
A

r
)2(dr2 + r2dθ2 + r2 sin2 θdφ2) +

1

(1 + A
r
)2
dt2 (4.1)

The two quantities Rν
µ and Uν

µ being proportional to each other, we set as in (2.12) and

(2.8)

U4
4 = − b

4π
R4

4 =
1

4π
e−(α+δ)(F14)

2 (4.2)

By (2.17) we have

R4
4 = e−α(−1

2
δ′′ − 1

4
δ′2 +

1

4
α′δ′ − 1

4
β ′δ′ − 1

4
γ′δ′ − δ′

r
) (4.3)

Here, since we have α = β = γ = −δ we get

R4
4 = eδ(−1

2
δ′′ − δ′

r
)

Replacing eδ by (1 + A
r
)−2 we find

R4
4 = − A2

(r + A)4
(4.4)

so that
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R4
4 = −1

b
(F14)

2 = − A2

(r + A)4
(4.5)

F14 =
√
b

A

(r + A)2

U4
4 = − bA2

4π(r + A)4

The integral over all space is

∫

U4
4 dv =

bA

3
(4.6)

Setting this equal to the mass of the particle, we get

bA

3
= mc2 (4.7)

This expression has the dimensions of an energy. As A has the dimension of length, b must

have the dimensions of a force. We remark that the combination e2

mc2
has the dimension of

a length, and the combination m2c4

e2
has the dimensions of a force. We set

b =
9m2c4

e2
(4.8)

A =
1

3

e2

mc2

so that

bA2 = e2 (4.9)

The electric field is by (4.4) and (4.9)

E = F14 =

√
bA

(r + e2

3mc2
)2

=
e

(r + e2

3mc2
)2

(4.10)

The distance A is equal to

A =
e2

3mc2
=

1

3

e2

~c

~

mc
=

1

3
αλ = 0.9393× 10−13cm (4.11)

The covariant charge current-density vector gives
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J4 =
1

2π
(F ν

4 )ν =
1

2π
√−g

∂

∂xν
(F ν

4

√−g)− 1

2

∂gαβ

∂x4
Fαβ (4.12)

In the static case the last term is zero, and we have, taking account of (4.1)

J4 =
1

2π(r + A)2
∂

∂r
[F 1

4 (r + A)2] (4.13)

Since F 1
4 = g11F41 = −(1 + A

r
)−2e(r + A)2 we get

J4 = − e

2π(r + A)2
∂

∂r

1

(1 + A
r
)2

=
eAr

π(r + A)5
(4.14)

The integral of this expression over all space is

∫

J4dv = 4π
eA

π
[− 1

r + A
+

3

2

A

(r + A)3
+

A2

(r + A)3
+

A3

4(r + A)4
]∞0 = e (4.15)

that is, the integral of the charge density over all space is equal to the charge of the particle.

We note that we do not encounter any infinities in our calculations. The mass of the

particle is spread out over all space, and so is its charge. We interpret the gµν not in terms

of a curvature, but in terms of constraints in the unit lengths at every point of space. The

equality of α, β, and γ in the line element (4.1), is interpreted as an isotropic constraint

in all three directions at every point of space. We note that in the gravitational case the

vanishing of γ and β in the line element (2.5) denotes that in that case the only constraint

is in the direction of the radius vector.

B. The Muon

The relativistic wave equations for a particle in a central potential are

(E +mc2 − V )F − 2πhc
dG

dr
− 2πhck

r
G = 0 (4.16)

(E −mc2 − V )G+ 2πhc
dF

dr
− 2πhck

r
F = 0

where F and G are two wave functions and r is the distance to the origin. We substitute

the quantities V = −(r+ e2

3mc2
)−2e2, z = E

mc2
, β1 = 1+ z, β2 = 1− z, β =

√
β1β2 =

√
1− z2,

and the fine-structure constant α = e
~c

= 0.00729735 in equations (4.16), and introduce two

new wave functions f and g defined by
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F (ρ) = e−ρf(ρ)

G(ρ) = e−ρg(ρ)

and we obtain the following relations

g′ − g +
kg

ρ
− (

β1

β
+

α

ρ+ αβ

3

)f = 0 (4.17)

f ′ − f − kf

ρ
− (

β2

β
− α

ρ+ αβ

3

)g = 0

We introduce two new wave functions φ and ψ defined by

f = ρs(ρ+
αβ

3
)tφ

g = ρs(ρ+
αβ

3
)tψ

and we obtain the equations

ρ(ρ+
αβ

3
)ψ′+[(ρ+

αβ

3
)(s+ k − ρ) + tρ]ψ (4.18)

−[
β1

β
(ρ+

αβ

3
) + α]ρφ = 0

ρ(ρ+
αβ

3
)ψ′+[(ρ+

αβ

3
)(s− k − ρ) + tρ]φ

−[
β2

β
(ρ+

αβ

3
)− α]ρψ = 0

We expand φ and ψ in terms of ρ

φ =
∑

anρ
n (4.19)

ψ =
∑

bnρ
n

and substitute these expansions in the equations (4.18); we equate to zero the constant

terms

13



(s+ k)
αβ

3
b0 = 0

(s− k)
αβ

3
a0 = 0

We must therefore have either s = +k and b0 = 0, or s = −k and a0=0. We choose s = +k

and therefore b0 = 0.

We introduce a new variable

x = ρ+
αβ

3

and substitute in the relations (4.18), and we obtain the two equations

x(x− αβ

3
)ψ′+[2kx+ (t− x)(x− αβ

3
)]ψ (4.20)

−(
β1

β
x+ α)(x− αβ

3
)φ = 0

x(x− αβ

3
)φ′+[(t− x)(x− αβ

3
)]φ

−(
β2

β
x− α)(x− αβ

3
)ψ = 0

We expand φ and ψ in terms of x

φ =
∑

cnx
n

ψ =
∑

dnx
n

and substitute in the equations (4.20); we equate to zero the constant terms

− t
αβ

3
d0 +

α2β

3
c0 = 0

−tαβ
3
c0 −

α2β

3
d0 = 0

which give t2 = −α2, that is t = ±iα. We choose t = +iα. Replacing t by this value in

equation (4.18), we obtain the two equations
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ρ(ρ+
αβ

3
)ψ′+[−ρ2 + (2k + iα− αβ

3
)ρ+ 2k

αβ

3
]ψ (4.21)

−[
β1

β
(ρ+

αβ

3
) + α]ρφ = 0

(ρ+
αβ

3
)φ′+[−ρ+ iα− αβ

3
]φ

−[
β2

β
(ρ+

αβ

3
)− α]ψ = 0

We substitute the expansions (4.19) into equations (4.21) and equate to zero the coeffi-

cients of successive powers of ρ. We obtain thus an infinite sequence of equations connecting

the different coefficients an, bn of expansions (4.19)

αβ

3
a1 + (iα− αβ

3
)a0 = 0 (4.22)

αβ

3
(1 + 2k)b1 − (

αβ1

3
+ α)a0 = 0

2αβ

3
a2 + (1 + iα− αβ

3
)a1 − (

αβ2

3
− α)b1 − a0 = 0

(2 + 2k)
αβ

3
b2 + (1 + 2k + iα− αβ

3
)b1 − (

αβ1

3
+ α)a1 −

β1

β
a0 = 0

3
αβ

3
a3 + (2 + iα− αβ

3
)a2 − (

αβ2

3
− α)b2 − a1 −

β2

β
b1 = 0

(3 + 2k)
αβ

3
b3 + (2 + 2k + iα− αβ

3
)b2 − (

αβ1

3
+ α)a2 − b1 −

β1

β
a1 = 0

· · · · · · · ·

n
αβ

3
an + (n− 1 + iα− αβ

3
)an−1 − (

αβ2

3
− α)bn−1 − an−2 −

β2

β
bn−2 = 0

(n+ 2k)
αβ

3
bn + (n− 1 + 2k + iα− αβ

3
)bn−1 − (

αβ1

3
+ α)an−1 − bn−2 −

β1

β
an−2 = 0

The expansions (4.19) must terminate at some power of ρ. If the expansions terminate at

the first power of ρ, then all coefficients after a1, b1 being zero, the third pair of relations

(4.22) give

b1

a1
= −β1

β
(4.23)

We substitute this value of b1 in terms of a1 in the second pair of equations (4.22), we

multiply the first of these by β1 and the second by β and subtract the one from the other.

We obtain the relation
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β1(1 + iα) + βα + β1(1 + 2k + iα)− β1

β
α = 0 (4.24)

which gives the value of k

k = −1 − iα +
αz

β
(4.25)

In general, if expansion (4.19) terminates in ρn we have

k = −n− iα +
αz

β
(4.26)

we substitute (4.23) and (4.25) in the first pair of relations (4.22), we eliminate the coeffi-

cients a1 and b1, and obtain

− β2

β
=

β1 + 3

(β − 3i)(−1− 2iα + 2αz
β
)

(4.27)

which yields the complex equation of the second degree

(2α2 + 6iα)z2 + (−9− 18iα)z + 9− 20α2 + 12iα = 0 (4.28)

The moduli of the two roots of this equation give the masses of two charged particles in

units of the electron mass. These particles have no nuclear interaction. The roots are

z1 = 0.999892 + i5.18192× 10−7 (4.29)

z2 = 2.50009− i205.546

and their moduli are

|z1| = 0.999893 (4.30)

|z2| = 205.561 = 105.042MeV

The first root gives the mass of the electron in the field of a positive charge; the second root

gives the mass of the muon in the field of a positive charge. The experimental value of the

muon mass is 206.768 (105.659MeV).

Further values of masses of heavy leptons may be obtained by terminating expansions

(4.19) at higher powers of ρ.
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V. THE NUCLEAR FIELD AND THE HADRONS

A. The Potential Φ3

Referring to table I, we see that the components of the field due to Φ3, are F13 = −∂Φ3

∂x1

and F23 = −∂Φ3

∂x2

. The energy tensor (2.3) is

Uν
µ =

1

2π
(−F ναFµα +

1

4
gνµF

αβFαβ) (5.1)

we calculate first F αβFαβ. The only components of Fµν being F13 = −F31 and F23 = −F32 ,

we have

F αβFαβ= 2F 13F13 + 2F 23F23 (5.2)

= 2[g11g33(F13)
2 + g22g33(F23)

2]

= 2g33[g11(F13)
2 + g22(F23)

2]

= 2e−γr−2 sin−2 θ[e−α(F13)
2 + e−βr−2(F23)

2]

and

F 1αF2α = F 13F23 = g11g33F13F23 = e−(α+γ)r−2F13F23 (5.3)

F 2αF1α = F 23F13 = g22g33F23F13 = e−(β+γ)r−2F13F23

F 13F 13 = g11g33(F13)
2 = e−(α+γ)r−2(F13)

2

F 23F 23 = g22g33(F23)
2 = e−(β+γ)r−2(F23)

2

Also
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U1
1 =

1

4π
e−γr−2 sin−2 θ[+e−α(F13)

2 + e−βr−2(F23)
2] (5.4)

U2
2 =

1

4π
e−γr−2 sin−2 θ[−e−α(F13)

2 − e−βr−2(F23)
2]

U3
3 =

1

4π
e−γr−2 sin−2 θ[−e−α(F13)

2 − e−βr−2(F23)
2]

U4
4 =

1

4π
e−γr−2 sin−2 θ[+e−α(F13)

2 + e−βr−2(F23)
2]

U2
1 =

1

2π
e−(β+γ)r−4 sin−2 θ(F13F23)

U1
2 =

1

2π
e−(α+γ)r−4 sin−2 θ(F13F23)

U = U1
1 + U2

2 + U3
3 + U4

4 = 0

We remark that since eα, eβ , eγ, eδ are pure numbers, the expressions in square brackets

show that F13 and 1
r
F23 have the same dimensions. This fact suggests an analogy with the

field of a dipole, which is of the form

Hr =
2µ cos θ

r3
(5.5)

Hθ =
µ sin θ

r2

deriving from a potential

Φ =
µ cos θ

r2
(5.6)

We assume therefore the following expression for the potential Φ3

Φ3 =
σ cos θ

(r +D)2
(5.7)

where σ is the strength of the source, D is a basic length introduced in analogy with formula

(2.21), and θ is the angle between the axis of the dipole and the radius vector to the point

of observation. The field due to the potential Φ3 is

F13 = −∂Φ3

∂r
=

−2σ cos θ

(r +D)3
(5.8)

F23 = −∂Φ3

∂θ
=

σ sin θ

(r +D)2
(5.9)
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The energy density, taken in covariant form, is

U33 = g33U
3
3 = − 1

4π
[−e−α(F13)

2 − e−βr−2(F23)
2] (5.10)

As a first approximation we assume Galilean coordinates, so that U33 is equal to

U33 =
1

4π
[(F13)

2 + r−2(F23)
2] (5.11)

Substituting (5.8) and (5.9) in (5.11) we get

U33 =
1

4π
σ2[

4 cos2 θ

(r +D)6
+

sin2 θ

r2(r +D)4
] (5.12)

Integrating over all space we obtain the total energy

W =
4

15

σ2

D3
(5.13)

To find the values of σ and D, we first seek to find an order of magnitude for σ. We

make the assumption that the field due to the potential Φ3 is a constituent of the nuclear

field. We consider then the force between two protons in a nucleus. The field of a proton

for θ = 0 being 2σ(r +D)−3, the energy of the second proton in the presence of the first is

V = − 2σ2

(r +D)3
(5.14)

The nuclear interaction between the two protons will be

∂V

∂r
=

6σ2

(r +D)4
(5.15)

The electric repulsion between the two protons is e2(r+A)−2, where A is the basic length

for the electric field A = 0.9393× 10−13cm, see (4.11). We equate the two forces

6σ2

(r +D)4
=

e2

(r + A)2

If we adopt for D the Compton wavelength for the proton λ = 0.21× 10−13cm, we obtain

σ

e
=

(r + 0.21× 10−13)2cm√
6(r + 0.94× 10−13)cm

The distance r between protons being of the order of a fermi, σ
e
will also be of the order of

a fermi, and σ will be of the order
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σ ≃ 10−13e ≃ 10−23 (5.16)

We can find the order of magnitude of the energy stored by the field in the whole space

by inserting the values of σ and D in (5.13)

W ∼ 4× 10−46

15× (0.21× 10−13)3
∼ 10−5erg (5.17)

The mass of proton being M = 1.6× 10−13erg, the ratio of the energy of the nuclear field

to the mass of the proton will be of the order of W
M

∼ 10−5

10−3 ∼ 10−2 ∼ α ≃ 1
137

, that is, the

fine structure constant. We equate therefore the expression (5.13) to αMc2

4

15

σ2

λ3
= αMc2 =

e2

~c
Mc2 =

e2

λ

so that σ2 = 3.75e2λ2, or

σ = 1.936eλ (5.18)

For the value of M which we shall use, we deduct from the mass Mp = 938.26MeV of the

proton the mass m of its positive charge, which is of electromagnetic nature. We thus get

M = 938.26− 0.51 = 937.75MeV (5.19)

λ = 0.2104× 10−13cm (5.20)

σ = 1.9569× 10−23cgs (5.21)

B. The Baryons

If we substitute the potential energy of the nuclear field (5.14) in the wave equation

(4.16), we must obtain the masses of baryons, following the same method that was used to

obtain the leptons. The wave equations are

(E −Mc2 −W )G+ ~c
dF

dr
− ~ck

r
F = 0 (5.22)

(E +Mc2 −W )F − ~c
dG

dr
− ~ck

r
G = 0
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We make the following substitutions in these equations

z =
E

Mc2
(5.23)

β1 = 1 + z

β2 = 1− z

β =
√

β1β2 =
√
1− z2

α =
e2

~c

ρ =
βr

λ

W = − 2σ2

(r + λ)3

where W has been taken for θ = 0.

We take two new wave functions defined by

f(ρ) = eρF (5.24)

g(ρ) = eρG

and obtain the two equations

f ′ − f − kf

ρ
− (

β2

β
− W

βMc2
)g = 0 (5.25)

g′ − g +
kg

ρ
− (

β1

β
+

W

βMc2
)f = 0

We transform the expression W
βMc2

using relations (5.14) and (5.19)

W

βMc2
= − 2σ2

(r + λ)3
1

βMc2

= − 7.5e2λ2

(λ
β
)3(ρ+ β)3βMc2

= − 7.5e2β2

λ(ρ+ β)3Mc2
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Substituting ~

Mc
= λ and e2

~c
= α we get

W

βMc2
= − 7.5αβ2

(ρ+ β)3
= −0.05473

β2

(ρ+ β)3
(5.26)

We denote the number 7.5α by p.

p = 7.5α = 0.05473 (5.27)

We take two new wave functions φ and ψ defined by

f = ρu exp[
s

2(ρ+ β)2
]φ (5.28)

g = ρu exp[
s

2(ρ+ β)2
]ψ

Equations (5.25) become

ρφ′ + [u+ ρ
s

(ρ+ β)3
− ρ− k]φ− [

β2

β
− pβ2

(ρ+ β)3
]ρψ = 0 (5.29)

ρψ′ + [u+ ρ
s

(ρ+ β)3
− ρ+ k]ψ − [

β2

β
+

pβ2

(ρ+ β)3
]ρφ = 0

We expand φ and ψ in terms of ρ

φ = A0 + A1ρ+ A2ρ
2 + A3ρ

3 + · · · (5.30)

ψ = B0 +B1ρ+B2ρ
2 +B3ρ

3 + · · ·

Substituting these expansions in (5.29), and equating to zero the constant terms, we get

u = k, B0 = 0, or u = −k, A0 = 0. We choose

u = −k (5.31)

A0 = 0

Writing ξ = ρ+ β equations (5.29) become
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(ξ − β)φ′ + [−2k +
(ξ − β)s

ξ3
− (ξ − β)]φ− [

β2

β
− pβ2

ξ3
](ξ − β)ψ = 0 (5.32)

(ξ − β)ψ′ + [
(ξ − β)s

ξ3
− (ξ − β)]ψ − [

β1

β
+
pβ2

ξ3
](ξ − β)φ = 0

We expand φ and ψ in powers of ξ

φ = a0 + a1ξ + a2ξ
2 + a3ξ

3 + · · · (5.33)

ψ = b0 + b1ξ + b2ξ
2 + b3ξ

3 + · · ·

We substitute these expressions in equations (5.32) and equate constant terms to zero, and

we obtain

−sa0 − pβ2b0 = 0

−sb0 + pβ2a0 = 0

which gives s2 = −p2β4, or s = ±ipβ2.

We choose s = ipβ2 which gives

b0 = −ia0 (5.34)

Equations (5.32) become, after dividing the first by (ξ − β) and multiplying both by ξ3

ξ3(ξ − β)φ′ + [−2k + ipβ2(ξ − β)− ξ3(ξ − β)]φ− [
β2

β
ξ3 − pβ2](ξ − β)ψ = 0 (5.35)

ξ3ψ′ + [ipβ2 − ξ3]ψ − [
β1

β
ξ3 + pβ2]φ = 0

Equating the coefficients of ξ to zero we get

b1 = −ia1 (5.36)

Equating the coefficients of ξ2 to zero we get

b2 = −ia2 (5.37)
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We continue by equating the coefficients of ξ3, ξ4, ξ5 and successive powers of ξ to zero

and obtain the following sequence of equations

ipβ3a3 + pβ3b3 + βa1 + (2k − β + iβ2)a0 = 0 (5.38)

ipβ2b3 − pβ2a3 − ia1 + (i− β1

β
)a0 = 0

ipβ3a4 + pβ3b4 − ipβ2a3 − pβ2b3 + 2βa2 + (2k − 1− β + iβ2)a1 + (1− i
β2

β
)a0 = 0

ipβ2b4 − pβ2a4 − 2ia2 + (i− β1

β
)a1 = 0

ipβ3a5 + pβ3b5 − ipβ2a4 − pβ2b4 + 3βa3 + (2k − 2− β + iβ2)a2 + (1− i
β2

β
)a1 = 0

ipβ2b5 − pβ2a5 + 3b3 + (i− β1

β
)a2 = 0

ipβ3a6 + pβ3b6 − ipβ2a5 − pβ2b5 + 4βa4 + (2k − 3− β)a3 + β2b3 + (1− i
β2

β
)a2 = 0

ipβ2b6 − pβ2a6 + 4b4 + b3 −
β1

β
a3 = 0

ipβ3a7 + pβ3b7 − ipβ2a6 − pβ2b6 + 5βa5 + (2k − 4− β)a4 + β2b4 +
β2

β
b3 + a3 = 0

ipβ2b7 − pβ2a7 + 5b5 − b4 −
β1

β
a4 = 0

· · · · · · · ·

· · · · · · · ·

ipβ3an + pβ3bn − ipβ2an−1 − pβ2bn−1 + (n− 2)βan−2 + (2k − n+ 3− β)an−3

−β2bn−3 +
β2

β
bn−4 + an−4 = 0

ipβ2bn − pβ2an + (n− 2)bn−2 − bn−3 −
β1

β
an−3 = 0

1. Expansions (5.33) terminate with ξ3

If the expansions (5.33) terminate at ξ3 so that a4, b4 and all coefficients after a4 and b4

vanish, the second equation of the fourth pair in (5.38) will give

b3 = −β1
β
a3 (5.39)

Multiplying the first equation of the fourth pair in (5.38) by β1

β
and subtracting it from
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the second equation of the third pair in (5.38), we find

β1

β
(6− 2k)a3 = 0 (5.40)

which has the two solutions

β1 = 0 (5.41)

k = 3

The solution β1 = 0, that is z = −1, represents a particle with a negative mass equal to

the neutron mass. The second solution k = 3 substituted in the first equation of the third

pair in (5.38) gives

− 3βa3 + (−4 + β − iβ2)a2 + (i
β2

β
− 1)a1 = 0 (5.42)

We eliminate a1 between (5.42) and the second equation of the second pair in (5.38).

Multiplying (5.42) by β1

β
and subtracting from second equation of the second pair in (5.38)

we obtain the equation

3β1a3 + (4
β1

β
− β1 + iβ − 2i)a2 = 0 (5.43)

We have now to eliminate a2 between (5.43) and the second equation of the third pair in

(5.38). Multiplying this last equation by β and taking account of relation (5.39) and adding

to (5.43) we get

β(
β1

β
− i) + 4

β1

β
− β1 + iβ − 2i = 0 (5.44)

which may be written as

β(i+ β1) = β1(2 + iβ2) (5.45)

Squaring, we get

(1− z2)[−1 + 2i(1 + z) + (1 + z)2] = (1 + z)2[4 + 2i(1− z)− (1− z)2] (5.46)

which reduces to the equation of the second order degree in z
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(2− 2i)z2 + 3z + 3 + 2i = 0 (5.47)

Writing z = x+ iy and separating real and imaginary parts, we obtain the two simultaneous

equations

2x2 + 4xy − 2y2 + 3x+ 3 = 0 (5.48)

2x2 − 4xy − 2y2 − 3y − 2 = 0

whose solutions are

(x1, y1) = (0.23757,−1.16572) (5.49)

(x2, y2) = (−0.98757, 0.41572)

We consider only the first root whose real part is positive. Its modulus is |z| = 1.18968.

Multiplying this by the reduced mass of the nucleon 937.75MeV from (5.19) we get

M = 1115.62MeV

which is to be compared with the mass of the baryon

Λ = 1115.6± 0.05MeV (5.50)

2. Expansions (5.33) terminate with ξ4

In equations (5.38), a5, b5 and all the following coefficients vanish. So the second equation

of the fifth pair in (5.38) gives

b4 = −β1
β
a4 (5.51)

Multiplying the second equation of the fourth pair in (5.38) by β2

β
and subtracting from

the first equation of the fifth pair in (5.38) we get

4− 2k + 4 = 0 (5.52)
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which gives k = 4.

Replacing b4 from (5.51) we get

a4 = −1

4
(
β

β1
b3 + a3) (5.53)

Multiplying the second equation of the third pair in (5.38) by β2

β
and subtracting from

the first equation of the fourth pair in (5.38) we get

− 4βa4 + (−5 + β)a3 + (β2 − 3
β2

β
)b3 = 0 (5.54)

Replacing a4 from (5.53) into the second equation of the fourth pair in (5.38) we get

b3 = − β

β2

5− 2β

3− 2β
a3 (5.55)

We replace in the second equation of the fourth pair in (5.38) b3 by its value from (5.55)

and we get

a4 =
1

2(3− 2β)
a3 (5.56)

We multiply the second equation of the second pair (5.38) by β2

β
and subtract from the first

equation of the third pair in (5.38)

2pβ(iβ − z)a4 − 3βa3 + (−6 + β − iβ2 + 2i
β2

β
)a2 = 0 (5.57)

We eliminate a2 between (5.57) and the second equation of the third pair in (5.27) and get

2pβ(iβ − z)(iβ − β1)a4 − 3(iβ − β1)a3 + 3(iβ2 − β + 4)b3 = 0 (5.58)

Replacing a4 and b3 by their values (5.56) and (5.55) we obtain the equation

β[p(−1 + 2z) + 12iβ2 + 48] = β2[ip(1 + 2z) + 24i+ 12β1] + 60 (5.59)

Squaring and dividing by 12, we obtain the equation of the third degree

(4p+ 2ip+ 12− 24i)z3 + (2p− 12ip+ 24i)z2 (5.60)

+(
p2

12
− 8p+ 3ip+ 36− 96i)z − p2

12
+ 2p+ 7ip+ 102 + 96i = 0
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In a first approximation we neglect p as found in (5.27) p = 0.05473. We have then after

dividing by 6, the equation to be solved

(2− 4i)z3 + 4iz2 + (6− 16i)z + 17 + 16i = 0 (5.61)

We write z = x+ iy and obtain the two simultaneous equations

2x3 − 4y3 − 12x2y − 3xy2 − 8xy + 6x+ 16y + 17 = 0 (5.62)

2x3 + y3 − 3x2y − 6xy2 − 2x2 + 2y2 − 3y + 8x− 8 = 0

It is possible to directly solve for the roots of (5.62), however, numerical solutions to (5.60)

can be obtained exactly as

(x1, y1) = (0.258, 2.22) (5.63)

(x2, y2) = (0.994,−1.15)

(x3, y3) = (−0.466,−1.46)

We consider only the first two solutions whose real parts are positive. The modulus of

the first solution is |z1| = 2.2332 which when multiplied by the reduced mass of the nucleon

937.75MeV as assessed in (5.19), gives the mass

M1 = 2094MeV

which is to be compared to the mass of the baryon

Λ = 2100(−10,+20)MeV (5.64)

The modulus of the second solution is |z| = 1.5225 which gives the mass

M2 = 1428MeV (5.65)

to be compared with the mass of the baryon N = 1450± 32.
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3. Expansions (5.33) terminate with ξ5

Following the same procedure as above, and beginning with the second equation of the

fifth pair in (5.38), we find first b5 = −β1

β
a5 and ending up with the second equation (5.32),

we arrive at the equation

pβ{[β(5− 5z − 10z2 − 18i− 25iz) + β1(−13β2 + 12z + 5β2i+ 10β2iz)] (5.66)

−2(β2 + iβz)a4 + 2(iβ2 − βz)}+ 6β1[β(iβ2 + 4) + β2(−β1 − 1)]a4

+6[β(6β2i+ β2 + 28) + β2(−9β1 − iβ2 − 7i)]b4 = 0

In a first approximation, if we neglect p, we have the equation

β1[β(β2i+ 4) + β2(−β1 − i)]a4 + (5.67)

[β(6β2i+ β2 + 28) + β2(−9β1 − iβ2 − 7i)]b4 = 0

Replacing b4 in terms of a4 derived from the second of the fourth equation and the fifth pair

of equations in (5.38), that is

b4 = − β

β1

3− β

2− β
a4 (5.68)

we arrive at the equation

β[102− 18z2 + i(29− 29z − 2z2 + 2z3)] =

β2[65 + 65z − 2z2 − 2z3 + i(33− 12z2)]

Squaring, we obtain the equation of the sixth degree

(8− 120i)z6 + 36z5+(84− 1524i)z4 + 648z3 + (978− 1386i)z2 (5.69)

+5931z + 6427 + 1586i = 0

The roots which have positive real parts are
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(x1, y1) = (1.502,−0.9444)

(x2, y2) = (0.1888, 1.950)

(x3, y3) = (0.059, 3.278)

The modulus of the first root is |z1| = 1.77457 giving, when multiplied by the mass of

the nucleon 937.75 (5.19)

M1 = 1664MeV

to be compared with the mass of the baryon ∆ = 1650(−35,+45)MeV. The second root

gives |z2| = 1.95939, that is

M2 = 1837.4MeV

to be compared with the mass of the baryon Σ = 1840 ± 10MeV. The third root gives

|z3| = 3.27879

M3 = 3074.7MeV

to be compared with the mass of the baryon N = 3030MeV.

In similar fashion, by terminating the expressions (5.33) at higher powers of ξ, we shall

obtain equations of increasing degree in z. The roots of these equations will give successive

values of the masses of baryons.

C. The Mesons: The Klein-Gordon Equation

We insert the potential energy V = − σ2

(ρ+λ)3
found in (5.14), into the Klein-Gordon radial

equation

[− 1

r2
d

dr
(r2

d

dr
) +

l(l + 1)

r2
]φ =

(E − V )2 −m2c4

~2c2
φ (5.70)

and make the change of variable ρ = z
λ
r where z = E

mc2
and λ = ~

mc
. We get the equation

z2

λ2
[− 1

ρ2
d

dρ
(ρ2

d

dρ
) +

l(l + 1)

ρ2
]φ =

(mc2z + z3

λ3

2σ2

(ρ+z)3
)2m2c4

~2c2
φ (5.71)
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In (5.18) we have found that σ2 = 3.75e2λ2. Equation (5.71) becomes therefore

{z2[ d
2

dz2
+

2

ρ

d

dρ
− l(l + 1)

ρ2
+ (1 +

7.5αz2

(ρ+ z)2
)2]− 1}φ = 0 (5.72)

where α = e2

~c
is the fine-structure constant.

We write φ = e−
1

2
ρF and get

z2{F ′′ + (
2

ρ
− 1)F ′ + [

1

4
− 1

ρ
− l(l + 1)

ρ2
+ (1 +

7.5αz2

(ρ+ z)3
)2]F} − F = 0 (5.73)

We write next F = ρsf and get

z2{ρ2F ′′ + [2(s+ 1)ρ− ρ2]f ′ + [s(s+ 1)− (s+ 1)ρ+
ρ2

4
− l(l + 1) (5.74)

+ρ2(1 +
7.5αz2

(ρ+ z)3
)2]f} − ρ2f = 0

Equating constant terms to zero we have

s(s+ 1)− l(l + 1) = 0 (5.75)

which gives s = l and s = −l − 1. We here take s = l for regular solutions.

Equation (5.74) becomes therefore after dividing by ρ

z2{ρf ′′ + [2(l + 1)− ρ]f ′ + [−(l + 1) +
ρ

4
(5.76)

+ρ(1 +
7.5αz2

(ρ+ z)3
)2]f} − ρf = 0

We multiply throughout by (ρ+ z)6

z2(ρ+ z)6{ρf ′′ + [2(l + 1)− ρ]f ′ + [−(l + 1) +
5

4
ρ]f} (5.77)

+[15αz4(ρ+ z)3ρ+ 56.25α2z6ρ− (ρ+ z)6ρ]f = 0

We expand f in powers of ρ

f = a0 + a1ρ+ a2ρ
2 + a3ρ

3 + · · · (5.78)
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We equate constant terms in equation (5.77) to zero

z8[2(l + 1)a1 − (l + 1)a0] = 0 (5.79)

which gives a1 =
1
2
a0.

We equate to zero the coefficients of ρ in equation (5.77)

z8[2(2l + 3)a2 − (l + 2)a1 +
5

4
a0] + (15αz7 + 56.25α2z6 − z6)a0 = 0 (5.80)

Taking the account of (5.79) this equation becomes

z2{2(2l + 3)a2z
2 + [−(l − 1

2
)z2 + 30αz + 2(56.25α2 − 1)]a1} = 0 (5.81)

which gives

a2 =
1

2(2l + 3)
[l − 1

2
− 30α

z
+

2(1− 56.25α2)

z2
]a1 (5.82)

If expansion (5.78) terminates so that a2 and following coefficients vanish, we have the

equation

(l − 1

2
)z2 − 30αz + 2(1− 56.25α2) = 0 (5.83)

that is

(l − 1

2
)z2 − 0.21892z + 1.994 = 0 (5.84)

For l = 0 from (5.83) we have the equation of the second degree

z2 + 0.43784z − 3.988 = 0 (5.85)

The positive root is z = 1.79004. This value, multiplied by the reduced mass of the nucleon,

937.75MeV as assessed in (5.19) gives the mass

M = 1679MeV (5.86)

to be compared with the meson g = 1680± 20MeV.

We equate next to zero the coefficient of ρ2 in (5.77)
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6(l + 2)a3z
8 + [−(l + 3)a2 +

5

4
a1]z

3 (5.87)

+[12(2l + 3)a2 − 6(l − 1

2
)a1 + 15αa1]z

7

+[90α+ 56.25α2 − 1]a1z
6 − 12a1z

5 = 0

We substitute the expression for a2 found in (5.82)

a2 =
1

2(2l + 3)
[l − 1

2
− 30α

z
+

2(1− 56.25α2)

z2
]a1 (5.88)

Dividing by z5 we find

6(l + 2)a3z
3 + {[−(l + 3)(l + 1

2
)

2(2l + 3)
+

5

4
]z3 (5.89)

+
l + 2

2l + 3
45αz2 − [

3(l + 2)

2l + 3
(1− 56.25α)2 − 90α]z − 675α2}a1 = 0

If in expansion (5.78), a3 and following coefficients vanish, we have the equation

(2− l)(2l + 9)

4(2l + 3)
z3 + 0.32838

l + 2

2l + 3
z2 (5.90)

−(2.991
l + 2

2l + 3
+ 0.65676)z − 0.036 = 0

For l = 0, equation (5.90) becomes

z3 + 0.14595z2 − 1.76714z − 0.024 = 0 (5.91)

which has the positive root z = 1.2641, which multiplied by the reduced mass of the nucleon

937.75MeV, gives the mass

M = 1185MeV (5.92)

to be compared with the meson ǫ = 1200± 100MeV.

We equate next to zero the coefficients of ρ3 in (5.77)
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4(2l + 5)z4a4 + [−(l + 4)a3 +
5

4
a2]z

4 (5.93)

+[36(l + 2)a3 + (15α− 6(l + 3))a2 +
15

2
a1]z

3

+[(30(2l + 3)56.25α2 − 1)a2 + (45α− 15(l + 2) + 37.5)a1]z
2

+(90α− 6)a1z − 30a1 = 0

We substitute the expressions for a2 and a3 from (5.82) and (5.89), and obtain the relation

50.52631z4a4 + [z4 + 0.04605z3 − 0.70615z2 − 16.48146z − 1.06517]a1 = 0 (5.94)

If a4 and following coefficients in expansion (5.78) vanish, relation (5.94) gives an equation

whose positive root is z = 2.641, which multiplied by the reduced mass of the nucleon as

assessed in (5.19), gives the mass

M = 2476MeV

to be compared with the meson X = 2500± 32MeV.

Further values of meson masses may be obtained by terminating expansion (5.78) at

higher powers of ρ.

VI. CONCLUSIONS

In this monograph, the premise is set forth, that the difficulties which to day beset particle

physics, are due to our adherence to the concept of point-like particles. A departure from

that concept is proposed, namely, that we base our quest on the postulate that particles are

infinitely extended in space.

An interpretation of general relativity that differs in some respects from that generally

accepted, results in the formulation of expressions for the gravitational, electric, and nuclear

potentials, which include each a basic length, and which are free from the infinities which

occur in the integrations for the self energy. The particle is seen to be spread over all space,

and its potentials are not interpreted in terms of a curvature of space, but as local stresses

in the unit mesh at a point.

34



TABLE III. List of Particles (mass in MeV).

Calculated Compared With

Leptons 105.04 Muon 105.66

1115.62 Λ 1115.6 ± 0.05

2094 Λ 2100(−10,+20)

Baryons 1428 N 1450 ± 32

1664 ∆ 1650(−35,+45)

1837 Σ 1840 ± 10

3074 N 3030

1679 g 1680 ± 20

Mesons 1185 ǫ 1200 ± 100

2476 X 2500 ± 32

When the potentials are inserted in the wave equations they yield in a simple manner

the masses of the muon, of baryons, and of mesons, as summarized in Table III.
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